2,140 research outputs found

    Distributed control using linear momentum exchange devices

    Get PDF
    MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities

    Lattice calculation of 1/p21/p^2 corrections to αs\alpha_s and of ΛQCD\Lambda_{\rm {QCD}} in the MOM~\widetilde{MOM} scheme

    Full text link
    We report on very strong evidence of the occurrence of power terms in \as(p), the QCD running coupling constant in the MOM~\widetilde{MOM} scheme, by analyzing non-perturbative measurements from the lattice three-gluon vertex between 2.0 and 10.0 GeV at zero flavor. While putting forward the caveat that this definition of the coupling is a gauge dependent one, the general relevance of such an occurrence is discussed. We fit ΛMSˉ(nf=0)=237±3−10+0\Lambda_{\bar{\rm MS}}^{(n_f=0)}= 237 \pm 3 ^{+ 0}_{-10} MeV in perfect agreement with the result obtained by the ALPHA group with a totally different method. The power correction to \as(p) is fitted to (0.63±0.03−0.13+0.0)GeV2/p2(0.63\pm 0.03 ^{+ 0.0}_{- 0.13}) {\rm GeV}^2/p^2.Comment: 21 pages, 3 figure

    Should we welcome robot teachers?

    Get PDF
    Abstract Current uses of robots in classrooms are reviewed and used to characterise four scenarios: (s1) Robot as Classroom Teacher; (s2) Robot as Companion and Peer; (s3) Robot as Care-eliciting Companion; and (s4) Telepresence Robot Teacher. The main ethical concerns associated with robot teachers are identified as: privacy; attachment, deception, and loss of human contact; and control and accountability. These are discussed in terms of the four identified scenarios. It is argued that classroom robots are likely to impact children’s’ privacy, especially when they masquerade as their friends and companions, when sensors are used to measure children’s responses, and when records are kept. Social robots designed to appear as if they understand and care for humans necessarily involve some deception (itself a complex notion), and could increase the risk of reduced human contact. Children could form attachments to robot companions (s2 and s3), or robot teachers (s1) and this could have a deleterious effect on their social development. There are also concerns about the ability, and use of robots to control or make decisions about children’s behaviour in the classroom. It is concluded that there are good reasons not to welcome fully fledged robot teachers (s1), and that robot companions (s2 and 3) should be given a cautious welcome at best. The limited circumstances in which robots could be used in the classroom to improve the human condition by offering otherwise unavailable educational experiences are discussed

    A one-piece 3D printed flexure translation stage for open-source microscopy.

    Get PDF
    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.We would like to thank Paula Rudall (Jodrell Laboratory, Royal Botanic Gardens, Kew, UK) for preparing the Pollia condensata samples. RWB was supported by Research Fellowships from Queens’ College, Cambridge and the Royal Commission for the Exhibition of 1851, and partial support was provided by EPSRC EP/L027151/1, the University Teaching and Learning Innovation Fund and the SynBioFund initiative.This is the final version of the article. It first appeared from AIP Publishing via http://dx.doi.org/10.1063/1.4941068 Data supporting this publication is available at http://www.repository.cam.ac.uk/handle/1810/253294. Design files and assembly instructions are available at http://docubricks.com/projects/ openflexure-microscope

    Measuring motion with kinematically redundant accelerometer arrays: theory, simulation and implementation

    Get PDF
    This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation

    A combined in vitro/in silico approach to identifying off-target receptor toxicity

    Get PDF
    Many xenobiotics can bind to off-target receptors and cause toxicity via the dysregulation of downstream transcription factors. Identification of subsequent off-target toxicity in these chemicals has often required extensive chemical testing in animal models. An alternative, integrated in vitro/in silico approach for predicting toxic off-target functional responses is presented to refine in vitro receptor identification and reduce the burden on in vivo testing. As part of the methodology, mathematical modelling is used to mechanistically describe processes that regulate transcriptional activity following receptor-ligand binding informed by transcription factor signalling assays. Critical reactions in the signalling cascade are identified to highlight potential perturbation points in the biochemical network that can guide and optimise additional in vitro testing. A physiologically-based pharmacokinetic model provides information on the timing and localisation of different levels of receptor activation informing whole-body toxic potential resulting from off-target binding

    Atomic-scale surface demixing in a eutectic liquid BiSn alloy

    Full text link
    Resonant x-ray reflectivity of the surface of the liquid phase of the Bi43_{43}Sn57_{57} eutectic alloy reveals atomic-scale demixing extending over three near-surface atomic layers. Due to the absence of underlying atomic lattice which typically defines adsorption in crystalline alloys, studies of adsorption in liquid alloys provide unique insight on interatomic interactions at the surface. The observed composition modulation could be accounted for quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of the single-layer Gibbs model, revealing a near-surface domination of the attractive Bi-Sn interaction over the entropy.Comment: 4 pages (two-column), 3 figures, 1 table; Added a figure, updated references, discussion; accepted at Phys. Rev. Let

    Relation of delayed recovery of myocardial function after takotsubo cardiomyopathy to subsequent quality of life

    Get PDF
    Takotsubo cardiomyopathy (TTC) has generally been regarded as a relatively transient disorder, characterized by reversible regional left ventricular systolic dysfunction. However, most patients with TTC experience prolonged lassitude or dyspnea after acute attacks. Although this might reflect continued emotional stress, myocardial inflammation and accentuated brain-type natriuretic peptide (BNP) release persist for at least 3 months. We therefore tested the hypotheses that this continued inflammation is associated with (1) persistent contractile dysfunction and (2) consequent impairment of quality of life. Echocardiographic parameters (global longitudinal strain [GLS], longitudinal strain rate [LSR], and peak apical twist [AT]) were compared acutely and after 3 months in 36 female patients with TTC and 19 age-matched female controls. Furthermore, correlations were sought between putative functional anomalies, inflammatory markers (T2 score on cardiovascular magnetic resonance, plasma NT-proBNP, and high-sensitivity C-reactive protein levels), and the physical composite component of SF36 score (SF36-PCS). In TTC cases, left ventricular ejection fraction returned to normal within 3 months. GLS, LSR, and AT improved significantly over 3-month recovery, but GLS remained reduced compared to controls even at follow-up (-17.9 ± 3.1% vs -20.0 ± 1.8%, p = 0.003). Impaired GLS at 3 months was associated with both persistent NT-proBNP elevation (p = 0.03) and reduced SF36-PCS at ≥3 months (p = 0.04). In conclusion, despite normalization of left ventricular ejection fraction, GLS remains impaired for at least 3 months, possibly as a result of residual myocardial inflammation. Furthermore, perception of impaired physical exercise capacity ≥3 months after TTC may be explained by persistent myocardial dysfunction

    The flavour singlet mesons in QCD

    Get PDF
    We study the flavour singlet mesons from first principles using lattice QCD. We explore the splitting between flavour singlet and non-singlet for vector and axial mesons as well as the more commonly studied cases of the scalar and pseudoscalar mesons.Comment: 12 pages, LATEX, 4 ps figure

    The role of the purinergic P2X(7 )receptor in inflammation

    Get PDF
    The inflammatory process, orchestrated against a variety of injurious stimuli, is composed of three inter-related phases; initiation, propagation and resolution. Understanding the interplay between these three phases and harnessing the beneficial properties of inflammation whilst preventing its damaging effects, will undoubtedly lead to the advent of much needed therapies, particularly in chronic disease states. The P2X(7 )receptor (P2X(7)R) is increasingly recognised as an important cell surface regulator of several key inflammatory molecules including IL-1β, IL-18, TNF-α and IL-6. Moreover, as P2X(7)R-dependent cytokine production is driven by activating the inflammasome, antagonists of this receptor are likely to have therapeutic potential as novel anti-inflammatory therapies. The function of the P2X(7)R in inflammation, immunity and its potential role in disease will be reviewed and discussed
    • …
    corecore